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We describe the divide-and-conquer technique for linear-scaling semiempirical
quantum mechanical calculations. This method has been successfully applied to
study cytidine deaminase. Large-scale simulations were performed for optimizing
geometries surrounding the active site of the enzyme and obtaining related energetics.
The results of the minimizations provide a significant complement to experimental
efforts and aid in the understanding of the enzymatic profile of cytidine deaminase.
More specifically, we present our predictions about the structure of the active species
and the structure of the active site for low pH. Finally, we present our results for the
structure of the zinc ion coordination for different substrates which represent points
along the reaction profile. In particular, we find that our results for the Zn-Sγ132 and
the Zn-Sγ129 bondlengths yield similar trends compared to x-ray crystallography
data as the enzyme structure changes from the ground-state to the transition-state
analog and from the transition-state analog to the product.c© 1999 Academic Press

I. INTRODUCTION

Considerable effort has been devoted to study the catalytic mechanisms of the nucleoside
deaminases cytidine deaminase (CDA) and adenosine deaminase [1–13]. The enzyme CDA
is an efficient catalyst which accelerates the rate of hydrolytic deamination of cytidine to
uridine. Understanding the catalytic mechanisms for CDA could have important potential
therapeutic uses [14–16]. Available x-ray crystallographic studies include several crystal
structures of stable intermediate CDA states achieved using different analog complexes to
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represent the ground-state [12], pre-transition-state [10], transition-state [8], and product
[13]. The experimental data from these studies have begun to suggest important subtleties in
the configuration of a catalyzed active zinc ion and in conformational differences between
complexes. The C4 position on the pyrimidine ring moves about 1.5Å closer to the Zn-
activated nucleophile while the amino group moves away from the nucleophile, with the
N4–C4 distance increasing from 1.33̊A in the ground-state to approximately 2.80Å in the
product-state [13]. The enzyme active site apparently changes structure to accommodate
each successive ligand in the sequence of structures.

However, many of these subtleties lie at or beyond the limit normally considered to be the
noise level of an x-ray diffraction experiment. To verify their significance, higher resolution
must be achieved or some theoretical tool must be employed to complement the experimental
procedures. A quantum mechanical (QM) description of the sequence of structures formed
during catalysis has long been a goal to help mechanistic enzymologists understand the
reaction pathway. Until recently, progress toward this goal has been frustrated by inadequate
computational methods and by the lack of a good experimental system with which to
calibrate the calculations. The problem is that any theoretical technique employed needs to
give a valid description for much of the protein environment surrounding the active site.

Quantum mechanical methods for determining the electronic structure of atoms and
molecules are crucial for a reliable description of complex chemical processes that are
inaccessible to conventional empirical models, e.g., bond formation and cleavage in chem-
ical reactions, polarization, and chemical bonding of metal ions. However, standard QM
techniques are limited to fairly small molecular systems because of a variety of theoretical
and technical difficulties. One of the several limitations of applying QM methods to large
systems is the high order scaling properties. For example, in Hartree–Fock (HF) type cal-
culations, the computational requirement, including CPU time and memory, scale asN2

to N4, whereN is the number of electron orbitals in the system. Density functional the-
ory (DFT) offers more computational efficiency, without loss of accuracy, but has similar
scaling problems due to theN3 diagonalization of the Hamiltonian matrix [17, 18].

Several linear-scaling methods have been proposed to circumvent thisN3 diagonalization
constraint [19–37]. In all the methods, the localization of the electronic degrees of freedom
is the key for achieving linear-scaling in QM calculations. One can efficiently calculate
the electronic structure of a large system with just the local variables, localized molecular
orbitals, or the density matrix. There is also the scaling issue of numerical integration
and matrix construction in DFT (and HF) calculations. As the focus here is on our use of
semiempirical approaches, the reader is referred to a recent review article on the linear-
scaling approach for the first-principle methods [38].

The divide-and-conquer (DAC) approach proposed by Yang was the first linear-scaling
method used to carry out QM calculations [19, 39]. The basic strategy of this method is
as follows: divide a large system into many subsystems, determine the electron density of
each subsystem separately, and sum the corresponding contributions from all subsystems
to obtain the total electron density and the energy of the system. This approach is based
on the fact that the electron density is a local property and, in DFT, the ground-state of a
system can be obtained solely from the electron density. A density-matrix reformulation of
the method by Yang and Lee further simplifies the algorithm [20]. Merzet al. and St-Amant
et al. have successfully applied and extended the DAC approach to several systems [40–43].

The organization of this paper is as follows. In the next section (Section II), we re-
view the DAC approach as it has been implemented into a semiempirical framework.
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After discussing this implementation, we will discuss the application of the DAC ap-
proach within this semiempirical framework to the cytidine deaminase enzyme system in
Section III.

II. THEORY

A. Semiempirical Quantum Chemical Theory

In semiempirical methods, the matrix elements of the Hamiltonian matrix are efficiently
calculated because of the judicious approximations made. The Hamiltonian matrix con-
structed from semiempirical (or tight-binding like) approximations is usually very sparse
and the computational effort in practice is limited only by the cubic-scaling diagonaliza-
tion processes. The sparseness of the Hamiltonian matrix implies that semiempirical QM
methods [44–46] are naturally conducive for the application of linear-scaling algorithms
to “diagonalize” the Hamiltonian matrix. The combination of an efficient determination
for the matrix elements and a linear-scaling algorithm for “diagonalization” have allowed
feasible QM calculations for very large systems. The density matrix version of the DAC
approach by Yang and Lee [20] accommodates a density matrix description so that it can
be applied to HF and semiempirical methods. It has been implemented into semiempirical
methods by Leeet al. [47] and Dixon and Merz [40, 41]. Stewart has implemented a pseu-
dodiagonalization method to obtain localized molecular orbitals [48]. Danielset al. have
used a conjugate gradient density matrix search to replace diagonalization in semiempirical
calculations [49]. These methods all have shown the feasibility of simulating molecules
with several thousand atoms within the semiempirical QM framework.

In the HF method, the system wavefunction is obtained from the eigenvalue equation

(F− εmS)Cm = 0, (1)

whereF is the Fock matrix,S is the basis overlap matrix, and{Cm} and {εm} are the
molecular orbitals and the corresponding eigenenergies of those orbitals. In terms of the
density matrixP, the Fock matrix can be rewritten as

Fi j = Hi j +
∑

kl

{
Pkl〈i j | kl〉 − 1

2
Pkl〈ik | j l 〉

}
, (2)

whereH is the one-electron core Hamiltonian matrix andi jkl are the indices of basis
functions. The four-center two-electron repulsion integral,〈i j | kl〉, is defined by

〈i j | kl 〉=
∫

dr1 dr2φi (r1)φ j (r1)
1

|r1− r2|φk(r2)φl (r2), (3)

where{φi }are the basis functions. The density matrix is obtained from the molecular orbitals
{Cm} of Eq. (1) by the following summation over the occupied orbitals

Pi j = 2
occ∑
m

CimCjm. (4)



LINEAR-SCALING OF CYTIDINE DEAMINASE 245

Finally, the total electronic energy of the system is

E = 1

2

∑
i j

Pi j (Hi j + Fi j ). (5)

To achieve self-consistent results, Eqs. (1)–(5) must be solved iteratively.
One of the main practical difficulties for HF methods is the high-order scaling property

of calculating the Fock matrix and the density matrix. Obtaining the Fock matrix could
scale asN4 because of the evaluation of four-center integrals. Furthermore, to get accurate
results, one should use a better basis set which leads to a very time-consuming evaluation
of integrals. Because of these difficulties, the application of HF methods is limited for
application to large systems.

Semiempirical calculations are set up with the same general structure as a HF calcula-
tion, but the required integrals are approximated or completely omitted. The approximated
integrals are calculated from a set of parameters which are fit to give the best possible
agreement with experimental data, as such the evaluation of integrals becomes much faster
and larger systems can be calculated. We only focus on the MNDO type semiempirical
methods, since not only is this type used to generate the results presented in Section III, but
also these methods are the most widely used and give acceptable results in most cases [50].
The approximations in the MNDO type semiempirical calculations, which include MNDO
[50], AM1 [51] and PM3 [52, 53], are described as follows.

(1) The overlap matrix in Eq. (1) is set to the identity matrix and Eq. (1) reduces to

(F− εm)Cm = 0. (6)

(2) All three- and four-center two-electron integrals are set to zero, i.e.,〈i j | kl〉=0,
except for integrals withi j on the same atom andkl on the same atom which will be
calculated.

(3) The two-center/two-electron integrals are approximated by the interactions of clas-
sical multipoles. The basis pairi j is treated as an electron density distribution and approx-
imated by point charges, such that the two-center integrals are represented by interactions
between two sets of multipole distributions. Of course, this approximation fails when the
distance between the two centers approaches zero, since consequently the integrals will ap-
proach infinity. In such a case, the two-center integrals should reduce to the corresponding
one-center integrals, but they do not. To correct this problem, a modified formula is used
for the Coulomb interactions [54]. For example, in the integral where〈i j | reduces to two
s-states on atom A and|kl〉 reduces to two s-states on atom B, i.e.,〈sAsA | sBsB〉, the factor
1/R is set equal to 1/

√
(R+CA+CB)2+ (GA+GB)2, whereCA,CB,GA, andGB are

derived parameters so that the two-center integrals reduce to the corresponding one-center
integrals atR= 0.

(4) The one-center two-electron integrals are fit to experimental data.
(5) The off-diagonal elements of the Hamiltonian matrix,H, are approximated by

Hi j = Si j

2
(βi + β j ), (7)

whereSi j is an overlap matrix element, assuming thati and j are Slater orbitals, and the
{βi } are parameters. The overlap matrix here is used only for calculation of theH matrix
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and it is not the equivalent overlap matrix as used in approximation (1). The diagonal
elements ofH are attributed to two types of contributions. For an atomic orbitali on atom
A, the contribution from atomA is fit, but the contribution from other nuclei, namely the
electron–nuclear interaction, is approximated by

He,n
ii = −

∑
B

ZB

∑
kl

〈i i | kl〉, (8)

where ZB is the nuclear charge of atomB and 〈i i | kl〉 is the two-center/two-electron
integral. The indicesk andl signify that the atomic orbitals are centered on atomB, any
atom different from atomA.

(6) In simple semiempirical methods, the nuclear–nuclear interaction between atom
A and atomB is modified to become the core–core repulsion interaction as

EN(A, B) = ZAZB〈sAsA | sBsB〉. (9)

However, in the MNDO method, the nuclear–nuclear interaction is modified such that

EMNDO
N (A, B) = ZAZB〈sAsA | sBsB〉

(
1+ e−αA RAB + e−αB RAB

)
(10)

or for O–H or N–H pairs,

EMNDO
N (A, B) = ZAZB〈sAsA | sBsB〉

(
1+ RABe−αA RAB + e−αB RAB

)
, (11)

whereαA andαB are parameters. In the AM1 and PM3 methods, extra terms are added,
yielding

EN(A, B) = EMNDO
N (A, B)+ ZAZB

RAB

(∑
k

ak Ae−bk A(RAB−ck A)
2 +
∑

k

ak Ae−bk A(RAB−ck A)
2

)
,

(12)

wherea, b, andc are all parameters.
Considering the above approximations, semiempirical methods are much faster than HF

methods in evaluating the the matrix elements needed for constructing the Hamiltonian
matrix. After this construction, the Hamiltonian matrix must be diagonalized to deter-
mine the band structure energy contribution of the total energy. In the next sections (Subsec-
tions II.B–II.D) we discuss the DAC approach to achieve linear-scaling “diagonalization”
and its implementation to semiempirical QM methods.

B. The Divide-and-Conquer Approximation

In this section, we describe the original DAC method which is only applicable to DFT
methods [19, 39]. In the next section (Subsection II.C), we will describe the density matrix
version of the DAC method which can be applied to both HF and semiempirical methods.

The electron density is the fundamental variable in the DAC method and can be repre-
sented as the sum of contributions from subsystems. This is made possible through normal-
ization of partition functions, ∑

pα(r) = 1, (13)
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wherepα(r) is the partition function for the subsystemα. The total density is then expressed
as a sum of subsystem density,

ρ(r) =
∑
α

pα(r)ρ(r) =
∑
α

ρα(r), (14)

whereρα(r)≡ pα(r)ρ(r). By definition, each subsystem density has the proper contribution
to the total density. Prescriptions have been defined for the partition functions [19, 39]. The
resulting density and energy do not depend on the particular form of the partition function
in any significant way.

A subsystem density defined in Eq. (14) is localized in only a small region of the physical
space and therefore can be obtained efficiently with an approximation that depends on the
local physical space,

ρα(r) = 2pα(r)
∑

m

fβ
(
µ− εαm

)∣∣ψα
m(r)

∣∣2, (15)

where fβ(x) is the Fermi function( fβ(x)= [1+ exp(−βx)]−1) with inverse temperature
β, andψα

m(r) andεαm are local eigenfunctions and eigenvalues of the subsystem. The factor
of 2 in Eq. (15) is for double occupancy in closed-shell systems. For each subsystem, the
local eigenfunctions are given by the linear combinations of the local basis functions{φαi },

ψα
m(r) =

∑
i

Cα
imφ

α
i (r), (16)

where the linear coefficients are the solutions of the following generalized eigenvalue equa-
tion derived from the Rayleigh–Ritz variational principle,(

Hα − εαmSα
)
Cα

m = 0. (17)

The Hamiltonian matrix and the overlap matrix elements are given by(Hα)i j =〈φαi |H |φαj 〉
and(Sα)i j =〈φαi |φαj 〉, where the Kohn–Sham HamiltonianH depends on the density. The
chemical potentialµ is set by the electron density normalization condition,

N =
∫
ρ(r) dr3 = 2

∑
α

∑
m

fβ
(
µ− εαm

)〈
ψα

m(r)|pα(r)|ψα
m(r)

〉
. (18)

Equations (15)–(18) need to be solved self-consistently, just as in the Kohn–Sham method.
Finally, the total electronic energy can be calculated fromE= ε+ Q[ρ], whereε is an
approximation to the sum of the Kohn–Sham eigenvalues,

ε = 2
∑
α

∑
m

εαm fβ
(
µ− εαm

)〈
ψα

m(r)|pα(r)|ψα
m(r)

〉
, (19)

The quantityQ[ρ]= ∫ ρ[−φ(r)/2−Vxc(r)] dr + Exc[ρ], whereφ(r) is the electrostatic
potential due to the electrons,Vxc(r) is the exchange-correlation potential, andExc[ρ] is
the exchange-correlation energy, can be determined from the density alone [19, 39].

The use of a set of basis functions localized in the relevant part of the space is what makes
the DAC method have linear-scaling with system size. The partition functions of Eqs. (13)–
(14) define the physical space division of a molecule. This concludes our discussion of the
general DAC method. In the next section (Subsection II.C), we discuss the density matrix
version of the DAC method.
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C. Density Matrix Version of Divide-and-Conquer Method

The fundamental component of the DAC method is the density matrix. The Kohn–Sham
one-electron density matrix is defined in terms of the Kohn–Sham orbitals{ψm(r)} as

ρ(r , r ′) = 2
N/2∑
m

ψm(r)ψm(r ′) =
∑

i j

ρi j φi (r)φ j (r ′), (20)

where the density matrix in the atomic orbital space is given by the linear coefficients in
the expansion of the Kohn–Sham orbitals; namely,

ρi j = 2
N/2∑
m

CimCjm. (21)

We can define a partition matrixPα
i j for subsystemα in the space of atomic orbitals.

Corresponding to Eq. (13), we implement the normalization condition∑
α

Pα
i j = 1. (22)

There is a simple way to construct such matrices; namely,

Pα
i j = 1 if i ∈ α and j ∈ α
= 1/2 if i ∈ α and j /∈ α
= 0 if i /∈ α and j /∈ α.

(23)

The density matrix can then be divided into subsystem contributions as

ρi j =
∑
α

Pα
i j ρi j ≡

∑
α

ραi j , (24)

which parallels Eq. (14).
We now make the approximation for each subsystem,

ραi j = 2Pα
i j

∑
m

fβ
(
µ− εαm

)
Cα

imCα
jm. (25)

This approximation corresponds to the one made for Eq. (15) in the original density ap-
proach. It uses a set of local eigenvectors to approximate the density matrix of a subsystem.
This is the crux of linear-scaling in the computational effort, because the set of local eigen-
vectors for a subsystem is finite and independent of the size of the whole system. The
chemical potentialµ is determined by the normalization,

N = 2
∑

i j

ρi j Si j = 2
∑

i j

{∑
α

Pα
i j

∑
m

fβ
(
µ− εαm

)
Cα

imCα
jm

}
Si j , (26)

and the sum of eigenvalues becomes

ε = 2
∑
α

∑
m

εαm fβ
(
µ− εαm

)∑
i j

Pα
i j C

α
imCα

jmSi j

= 2
∑

i j

{∑
α

Pα
i j

∑
m

fβ
(
µ− εαm

)
Cα

imCα
jm

}
Hi j , (27)
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corresponding to Eq. (19). The second equality in Eq. (27) follows from the eigenequation
Eq. (18) and the special construction of the partition matrix in Eq. (23) can also be written
asPα

i j =qαi +qαj , whereqαi = 1/2 if i ∈α andqαi = 0 if i /∈α.
The main difference between the density formulation and the general DAC method is

that the division of the molecule in the former is accomplished in the space of the atomic
orbitals, while the approximation of each subsystem by a set of local basis functions remains
the same as described in Eqs. (16) and (17). When there is only one subsystem per atom,
Eqs. (22)–(24) for the division of the density matrix correspond exactly to the Mulliken
population analysis [55].

There are two advantages of this density matrix formulation. The first one is that we
no longer need to calculate the integrals associated with the partition functions, that is,
〈φαi (r)|pα(r)|φαj (r)〉. This makes the new formulation more efficient, as three-dimensional
numerical integration is time consuming. The second advantage is that the density matrix
formulation can be applied to otherab initiomethods such as HF and semiempirical methods.
A drawback in dividing the molecule in atomic orbital space is that the division becomes
less localized in the physical space as we use more diffuse atomic functions—a well-known
problem of the Mulliken population analysis. In contrast, the Hirshfeld-type partition of the
density, Eqs. (13) and (14), is much less dependent on the basis functions.

The energy gradients with respect to the nuclear coordinates can be calculated by a
“divide-and-conquer” approximation to the exact force expression, as has been done with
the original density formulation [56]. However, we can have more efficient force calculations
within the semiempirical approach. See the next section (Subsection II.D) where we discuss
the implementation of the DAC method for semiempirical QM methods.

D. The Divide-and-Conquer Implementation to Semiempirical
Quantum Chemical Methods

The density matrix DAC method has been implemented into the MOPAC semiempirical
method [57]. In semiempirical calculations, the electronic energy is expressed by

E = 1

2

∑
i j

ρi j (Hi j + Fi j ), (28)

whereH is the one-electron core Hamiltonian matrix,F is the Fock matrix, andρ is the
density matrix. In the DAC approach, and using Eq. (14), the electronic energy can be
rewritten as

E = 1

2

∑
α

∑
i j

ραi j (Hi j + Fi j ). (29)

The energy gradient expressions for the DAC approach have been previously derived and
shown to be accurate [56, 20]. In the MOPAC package, the energy gradients are calculated
with the frozen density approximation. With this approximation, the DAC energy gradient
with respect to theα nucleus positionRa is expressed by

∇Ra E = 1

2

∑
α

∑
i j

ραi j∇Ra(Hi j + Fi j ). (30)
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Procedures for calculating the gradients are similar to those in MOPAC, except that the
total density matrix is approximated by the DAC approach. The MOPAC package uses
the BFGS optimization procedure for geometry optimization [57]. This procedure requires
constructing the Hessian Matrix which has anO(N2) scaling requirement for memory
usage; it cannot be used for large molecules. Instead, we choose a conjugate gradient
method for geometry optimization [58].

The gradients can be calculated by analytical methods [59] or by the finite difference
method. The finite difference method is faster than the analytical method, since the formulas
to calculate matrix elements are much simpler than those to calculate the derivatives of
matrix elements. Previous work showed that the finite difference method gives very close
agreement to the analytic method, thus the finite difference method has been used to calculate
gradients, as it is used in the MOPAC package [57]. However, the finite difference method
scales at least quadratically and it would become the computational bottleneck when the
system size becomes very large.

Several tests were performed to demonstrate the efficiency of the DAC implementation to
the semiempirical quantum chemical methods [47]. The results of these tests demonstrate
that the DAC implementation is computationally efficient and accurate. In all previously
performed tests and for the results presented here, the following computational criteria are
used.

A subsystem is defined as one amino acid residue for protein molecules and one nucleotide
unit for DNA molecules. Instead of the entire set of atomic orbitals, each subsystem is
described by a set of local basis functions, which enhances the accuracy of the description
for neighboring atoms (buffer atoms). Buffer atoms are selected by a distance criterion,Rb;
if an atom is within a distanceRb of a subsystem, this atom will be included as a buffer
atom for that subsystem. The diagonalization for a subsystem is performed with atomic basis
functions of the subsystem atoms and buffer atoms, and the computational effort scales as
N3
α , whereNα is the number of basis functions in theα subsystem and its buffer region.

Studies using density functional theory have shown that the buffer region size needed for
a given accuracy is independent of the size of the whole molecule [39, 60]. Hence, one
can chooseNα as roughly a constant; for example, each subsystem consists of a single
amino acid. The accuracy for different buffer sizes was previously determined elsewhere
[47]. An accuracy criterion of 5× 10−3 per atom was chosen for the energy calculations
and 0.1 kcal/(mol̊A) in gradient calculations. With this accuracy criterion, we found that
the buffer size should have no less than a 6.0Å cutoff (Rb= 6.0 Å).

While the DAC method overcomes theO(N3) scaling problem in the diagonalization
process, theO(N2) scaling of memory storage must be addressed. Since most matrix
elements in quantum calculations are negligibly small for large molecules, sparse matrix
storage methods can be employed. Because of density matrix locality in real space, we
choose to truncate the matrix elements using a distance criterion,Rh. Only the matrix
elements corresponding to atom pairs with interatomic distance less thanRh are evaluated
and stored. This cutoff reduces the memory storage so that it becomes linear with respect
to the size of the system. In addition, the CPU time used for matrix element evaluation
is significantly reduced since fewer of them are evaluated. Similarly, a smaller number of
matrix elements for the one-electron core Hamiltonian and Fock matrices are evaluated due
to this judicious cutoff criteria.

For solution phase calculations, a dielectric continuum model of the solvent (COSMO)
is used. The solute charge distribution is represented by a set of atomic charges, dipole
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moments, and quadrupole moments, that induces a reaction field charge density on the
solvent accessible surface of the solute [47, 61]. The solvent polarization effects on the
solvation energetics of biological molecules have been calculated with the DAC approach
[62, 63]. The error of screen energy in COSMO for the non-infinite dielectric constant
solvent has been estimated as 1/2ε, whereε is the dieletric constant [64]. For water, whcih
hasε= 78.5, the error is less than 1%. For the worst case, vacuum hasε= 1.0 and this
introduces a 50% error in the screen energy. However, for solvent withε= 1.0, the solvation
energy itself is quite small; hence the absolute error remains irrelevant. Therefore, even in
low dielectric solvent, the COSMO dielectric continuum model should still work reasonably
well.

We have described the main features of the DAC method and its implementation into a
semiempirical quantum chemistry package—MOPAC/DAC. We have used MOPAC/DAC
to perform simulations of a large-scale system (1330 atoms) including much of the protein
environment surrounding an active site of CDA. The results of these simulations will be
discussed in the next section (Section III).

III. APPLICATIONS TO CYTIDINE DEAMINASE

A. Calculational Details

As shown in Scheme I, the CDA active site includes a Znatombound by the thiolate
sulfur atoms of the Cys-129 and Cys-132 side chains and by a nitrogen atom of the His-102
side chain. Bound to this Zn-complex is a OH(−) or water molecule which displaces the
NH2 group, located at the C4 position on the cytidine ligand, via nucleophilic hydration of
the N3–C4 double bond. The product of this displacement is apparently the conventional
keto tautomer of uridine. The carboxylate group of Glu-104 near the NH2 group on the
cytidine ligand assists in the reaction both by stabilizing the tetrahedral transition-state and
by acting as a proton shuttle [11–13]. Several crystallographically determined structures
have been obtained for different complexes of CDA; each complex represents a point along

SCHEME I
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the reaction pathway. Recently, we performed several calculations focusing on the nature
of the active site and how it differs for each complex.

For these calculations, we created a system which represents roughly 30% of a monomer
of the enzyme. This 1330-atom system, which surrounds the active site, was created by
including any residue within 8.0̊A of the ligand (including contributions from the other
monomer). Chain ends in the system were terminated by addition of acetyl or N-methyl
groups. Our goal in choosing such a large system was for the purposes of including much of
the protein environment in our calculations. Of course, a common approach for including
a valid description of the protein environment surrounding the active site has been to com-
bine QM methods with molecular mechanical (MM) force fields [65–78]. While QM/MM
methods are promising, there remain difficulties in treating the boundaries between the QM
and MM subsystems; these difficulties should be overcome in due time. As an alternative,
we have taken advantage of the MOPAC/DAC implementations which allow larger QM
simulations to be performed efficiently using purely QM methods. Performing larger QM
simulations to account for a significant portion of the protein environment surrounding the
active site has long been a goal in quantum chemistry.

In all of our semiempirical calculations, we use the PM3 Hamiltonian [52]. The PM3
parameterization is shown to work well for Zn complexes [79], and recently for simulations
of the enzyme carbonic anhydrase which has a very similar hydrolytic mechanism and Zn
tetrahedral coordination as found in CDA, although typically semiempirical methods give
bond lengths on the order of 5% too large [77]. In addition, all of the optimized geometries
of the largest systems were obtained from gas-phase calculations. Given that the active site
of CDA is not solvent-accessible [8], the gas-phase approximation is a physically accurate
description.Ab initio work on Zn complexes indicates that a reaction in an enzyme-active
cavity may actually be better approximated by a gas-phase model rather than by a model
reaction in solution [80]. This point is definitely more valid for CDA than in other zinc
enzymes where the active site, such as in carbonic anhydrase, is partly solvent-accessible.
Since our calculations include much of the protein environment surrounding the active site,
our results are more physically reasonable than gas-phase calculations of a small system
where only a few primary components of the active site are included.

A smaller system consisting of 154 atoms was created and calculations using both the
PM3 semi-empirical Hamiltonian within MOPAC and DFT techniques within the DMol
package [81] were performed as a comparison against the larger 1330-atom systems. This
smaller system includes all the amino acids shown in Scheme I, such that residues 127–132
and residues 102–104 were included in the simulations. As in the larger 1330 systems,
blocking end groups of acetyl or N-methyl were used to terminate chain ends. Residues not
directly exposed to the active site were replaced by Glycine side chains (i.e., residues 128,
130, and 103).

Similar calculations using PM3 and DFT were also performed on an even smaller system
containing only 77 atoms, as shown in Scheme II. This smallest system consists of modifying
the system shown in Scheme I, such that Threonine-127 is replaced by Glycine, Cysteine-129
and Cysteine-132 are reduced to SCH3, and Histidine-102 is reduced to NH3. In addition,
the ribose ring of the ligand is not included.

In the calculations for both the 154 and 77 atom systems a variety of dielectric con-
stants were used within a dielectric continuum model. The DFT calculations were made
using both the local and non-local approximations to the exchange-correlation interactions.
Both minimal numerical basis sets and double numerical basis sets were used in the DFT
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SCHEME II

calculations for a comparison. These results are intended to give a preliminary comparison
of smaller sized systems to our larger system and do not represent a systematic study of
convergence nor validation of the chosen theoretical (semiempirical) level.

For all of these (77, 154, and 1330 atom) systems, geometries of different starting ar-
rangements were optimized, keeping backbone atoms fixed, with a 0.2 kcal/(moleÅ) rms
and 2.4 kcal/(mole̊A) max tolerance in the gradients. Keeping the backbone atoms fixed is
justified for these calculations by the fact that backbone atoms in several refined CDA com-
plexes coincide with rms deviations of 0.15Å for backbone atoms, and the only significant
changes occur near the active site [13]. The initial starting structure for all of these systems
was based on the x-ray crystallographic structure for the ground-state analog complex:
3-deazacytidine [12]. However, our initial structures where modified slightly to resemble
the different protonation states of Glu-104 and Zn-H2O which were minimized in our calcu-
lations. In addition, we replaced the 3-deaqzacytidine ligand with the cytidine ligand which
correctly represents the ground-state complex of the enzyme.

B. The Active Species of the Ground-State Complex

Recently we performed calculations to specify the structure of the active species at the
initiation of the reaction pathway [82]. In those results, which are summarized here, we
addressed two important issues: (1) whether the active species consists of a zinc-coordinated
hydroxide ion (Zn-OH(−)) or a zinc-coordinated water molecule (Zn-H2O); (2) which of
the two carboxylate oxygen atoms of Glu-104 is protonated in the active species.

Initially, we optimized the geometry for a 1330-atom system which represents the ac-
tive site, as shown in Scheme I, and the surrounding protein environment. This structure
contains Zn-H2O in the active site with the carboxylate group of Glu-104 unprotonated,
and it represents the active site of the complex just before the active species is created
by deprotonation of Zn-H2O. Results of geometry optimization, shown in Fig. 1a, for this
system indicate that the substrate water is stabilized by the carboxylate group of Glu-104
via hydrogen-bonding.
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Activation of CDA above about pH 5 suggests that Zn-H2O transfers a proton to the
carboxylate group of Glu-104; however, two different carboxylate oxygen sites (Oε1 and
Oε2) could accept a proton and two possible protons could be donated by the substrate water.
Four additional systems were created representing the configurations of these possible
protonation arrangements and their geometries were optimized. The net charge of all of
these 1330-atom systems remains the same since the proton from Zn-H2O is not removed
from the system but only displaced to a nearby location on the Glu-104 side chain.

We conclude that one structure, shown in Fig. 1b, is lower in energy and is prominently
the lowest energy structure than the other four structures by at least 46.0 kcal/mol. In this
structure, a hydrogen-bonding network is formed between the hydroxide proton of Zn-
OH(−), the protonated Oε2 of Glu-104, and the N3 position of the cytidine (CTD) substrate.
This hydrogen-bonding network gives credence to the conclusion that this structure is lower
in energy, since the higher energy structures do not form such a nicely structured hydrogen-
bonding network.

Considering all calculated structures, not only is the low energy structure, shown in
Fig. 1b, lower in energy compared to the other two-proton structures, but it also correlates
quite well in detail with the geometry observed at the active site of the enzyme in the x-ray
crystal structure [12]. Both the crystal structure and our calculations for the low energy struc-
ture indicate that the oxygen of the hydroxide and C4 of the cytidine ligand are significantly
closer than the van der Waals limit. Moreover, this short OH-C4 distance implies, in turn, that
the nucleophilic attack is being initiated as the ground-state Zn-OH(−) structure is formed.
Both evidence from the energetics and from comparison to crystallographic data supports
the fact that the low energy structure closely resembles the structure of the active species.

Table I shows results for the 154- and 77-atom systems using several DFT models and the
PM3 semiempirical under different solvation conditions with varying dielectric constants.
The energies (kcal/mol) listed are the differences between the structure containing Zn-H2O
in the active site and the structure containing Zn-OH in the active site, where a negative
number implies that the latter is lower in energy. Note that the net charge on the Zn-H2O and
Zn-OH structures is identical. The proton abstracted from Zn-H2O is not removed from the
Zn-OH system, but rather only displaced to the nearby Glu-104 side chain. The calculations
for the 154-atom system show that the Zn-OH structure is consistently lower in energy
compared to the Zn-H2O structure which is the same conclusion that was obtained for the
much larger 1330-atom system. However, the energy difference between the Zn-OH and
Zn-H2O structures is much greater for the 1330-atom system which might be attributable
to the fact that this large system contains a significant portion of the surrounding protein
environment.

The results for the 154-atom system, listed in Table I, support two points which were
made regarding the larger 1330-atom system. The first point is that our choice to calculate
our 1330 system within the gas-phase was judicious, and this was initially justified since the
active site is solvent inaccessible. The results for the 154-atom system lend further support
to this initial justification since the energy differences remain relatively unchanged with
respect to differences in the dielectric constant (indicating that the active site for this model
system is for the most part solvent inaccessible). Note that the energies for the 77-atom
system are widely dependent on the choice of dielectric constant indicating that the active
site for this smaller model system is more solvent accessible. The second point is that the
results for the 154-atom system indicate that the energies remain relatively indifferent with
respect to the DFT method used. This is not the case for the 77-atom system and it appears
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TABLE I

Energy Differences for Different Models under Different Solvation

Effects for Two Different Systems

Method ε 154 atoms 77 atoms

PM3 1.0 −22.64 −2.17
4.0 −23.67 0.75

10.0 −23.66 2.22
78.5 −23.52 3.41

LDA/Min 1.0 −14.76 29.29
4.0 −14.78

10.0 −14.87 13.58

LDA/DN 1.0 −16.03 5.16
10.0 −12.79
78.5 16.89

BPW/DNP 1.0 −14.09 −2.10
78.5 −12.32 −10.04

Note.The solvation model COSMO was used [47, 61], and the second column gives
ε which signifies the dielectric constant used for that calculation (i.e., 1.0= gas phase,
and 78.5=water). The last two columns are the energy differences (kcal/mol) between
the structure containing Zn-H2O in the active site and the structure containing Zn-OH in
the active site. A negative number implies that the latter structure (Zn-OH) is lower in
energy. The 154- and 77-atom systems are illustrated by Schemes I and II, respectively.
Legend. PM3, semiempirical Hamiltonian within the MOPAC routine [57]; LDA/Min,
local density approximation with minimal numerical basis set; LDA/DN, local density
approximation with double numerical basis set; BPW/DNP, Becke ’88 3 parameterization
formula for the exchange energy [87], Perdew and Wang ’91 gradient corrected formula
for the correlation energy [88, 89], double numerical plus polarization basis set.

that larger systems may be less sensitive to the theoretical method employed. This suggests
that for our large 1330-atom system use of the PM3 semiempirical method should give
quite reasonable results with respect to the much more computationally intensive use of
DFT.

Systems with protonating arrangements corresponding to low- and high-pH states were
also considered [82]. The low-pH structure consists of a three-proton arrangement contain-
ing Zn-H2O with the Oε2 of Glu-104 protonated as shown in Scheme III. We predicted that
at low pH the Zn-O bond length should be quite large, as if the substrate H2O is very weakly
bound to the Zn atom. Experimental x-ray crystallography data have been collected for the
ligand-free CDA structure at low pH. Preliminary comparisons of the low-pH structure to
the ligand-free CDA structure under normal conditions indicate that indeed the substrate
H2O is displaced away from the Zn atom under the low-pH conditions [83].

C. The Valence Buffer Effect in Cytidine Deaminase

Several crystallographic complexed structures, which represent points along the reaction
pathway, have been experimentally determined. We performed calculations on three of
these structures [84], and in this section a summary of the results are provided. The first
structure, as shown in Scheme IV, is a complex of CDA with 3-deazacytidine, whose
structure resembles the ground-state complex with its cytidine substrate.
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SCHEME III

The second structure, as shown in Scheme V, is a complex of zebularine 3-4 hydrate
which is an analog structure resembling the transition-state complex. The final and third
structure, as shown in Scheme VI, is a complex of uridine which is the product-state. For
each of these structures a 1330-atom subsystem was created and the geometry optimized
as described for the ground-state complex in Subsection III.A.

One goal for calculating these three structures is to investigate the bond distance between
the Zn atom and the two Sγ atoms of the Cys-129 and the Cys-132 side chains, dZn−Sγ 129and
dZn−Sγ 132. Xianget al. report that each distance increases from the deazacytidine complex
to the zebularine 3–4 hydrate complex [12]. In their work they find that more significant
increases are found for the Zn-Sγ132 bond distance since in the transition-state analog
structure there is a shortening of the hydrogen bond formed between Glu-104 and the 4-OH
oxygen of the ligand. Xianget al. further report that the two bond distances, dZn−Sγ 129 and

SCHEME IV
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SCHEME V

dZn−Sγ 132, again decrease from the zebularine 3-4 hydrate complex to the uridine complex,
with the more significant decrease for the Zn-Sγ132 bond distance.

This increase/decrease of the Zn-Sγ129 and Zn-Sγ132 bond distances represents what
is defined as the “valence-buffer” mechanism [12, 85, 86]. The bond valence determines
the strength of the bond to a metal which varies inversely with the distance. Therefore,
the experimental results show that these two bonds weaken as the enzyme progresses
from the ground-state to the transition-state, and strengthen as the enzyme progresses from
the transition-state to the product state. More significant increases/decreases of the Zn-Sγ

132 bond distance indicate that this bond is weakened/strengthened more significantly.
Table II shows the results for the bond distances, dZn−Sγ 129 and dZn−Sγ 132, obtained the-

oretically and experimentally for different CDA complexes. Our results do not compare
well to the experimental bond distances for the deazacytidine complex which show that

SCHEME VI
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TABLE II

The Calculated Distances (inÅ) between the Zn Atom and the TwoSγ
Atoms of the Cys-129 and Cys-132 Residues

Theoretical Theoretical Experimental Experimental
CDA complex dZn−Sγ 129 dZn−Sγ 132 dZn−Sγ 129 dZn−Sγ 132

Cytidine 2.433 2.428
Deazacytidine 2.413 2.345 2.301 2.087
Zebularine 3-4 hydrate 2.428 2.382 2.407 2.346
Uridine 2.407 2.332 2.310 2.265

Note. These distances are taken from the optimized geometries of different CDA
complex structures. Each optimized structure was represented by a 1330-atom subsystem
surrounding the active site.

dZn−Sγ 129 is significantly larger than dZn−Sγ 132, although typically semiempirical methods
give bond lengths on the order of 5% too large [77]. However, our results do verify that
the these two bond distances increase as the structure changes from the ground-state ana-
log complex to the transition state analog complex and vice versa as the structure changes
from the transition-state analog complex to the product complex. Our results further ver-
ify that the Zn-Sγ132 is weakened in the transition-state analog complex as there is a
shortening of the hydrogen-bond formed between Glu-104 and the 4-OH oxygen of the
ligand.

IV. SUMMARY

The divide-and-conquer methodology has made possible QM calculations for large bio-
logical systems. Quantum mechanical modeling of enzymes can offer a great deal of infor-
mation and understanding to complement experimental study. Even at the semiempirical
level, we are able to model the structure and energetics of enzyme systems, as demonstrated
here for CDA. We have accurately determined the nature of the active species structure
for CDA, as well as predicted the low-pH structure. Experimental crystallographic data
suggest that our prediction of the low-pH structure is encouraging. Finally, we verify the
valence-buffer effect, whereby the bond distance for Zn-Sγ132 is weakened as the enzyme
passes through the transition state. Rapid progress in the development of linear-scaling tech-
niques, combined with molecular dynamics, will make great progress in making molecular
modeling an equal partner of experimental research in biochemistry and biophysics.

REFERENCES

1. R. M. Cohen and R. Wolfenden, Cytidine deaminase fromEscherichia coli:Purification, properties, and
inhibition by the potential transition state analog 3,4,5,6-tetrahydrouridine,J. Biol. Chem. 246, 7561 (1971).

2. R. M. Cohen and R. Wolfenden, The equilibrium of hydrolytic deamination of cytidine and N4-methylcytidine,
J. Biol. Chem.246, 7566 (1971).

3. V. E. Marquez, P. S. Liu, J. A. Kelley, J. S. Driscoll, and J. J. McCormick, Synthesis of 1,3-diazepin-2-one
nucleosides as transition state inhibitors of cytidine deaminase,J. Med. Chem. 23, 713 (1980).

4. P. S. Liu, V. E. Marquez, J. S. Driscoll, R. W. Fuller, and J. J. McCormick, Cyclic urea nucleosids. Cytidine
deaminase activity as a function of aglycon ring size,J. Med. Chem.24, 662 (1981).



260 LEWIS ET AL.

5. G. W. Ashley and P. A. Bartlett, Inhibition ofEscherichia colicytidine deaminase by a phospha-pyrimidine
nucleoside,J. Biol. Chem.259, 13,621 (1984).

6. C. H. Kim, V. E. Marquez, D. T. Mao, D. R. Haines, and J. J. McCormick, Synthesis of pyrimidine-2-one
nucleosides as acid-stable inhibitors of cytidine deaminase,J. Med. Chem.29, 1374 (1986).

7. D. K. Wilson, F. B. Rudolph, and F. A. Quiocho, Atomic structure of adenosine deaminase complexed with
a transition state analog: Understanding catalysis and immunodeficiency mutations,Biochemistry252, 1278
(1991).

8. L. Betts, S. Xiang, S. A. Short, R. Wolfenden, and C. W. Carter, Jr., Cytidine deaminase: The 2.3Å crystal
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