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We describe the divide-and-conquer technique for linear-scaling semiempirical
guantum mechanical calculations. This method has been successfully applied to
study cytidine deaminase. Large-scale simulations were performed for optimizing
geometries surrounding the active site of the enzyme and obtaining related energetics.
The results of the minimizations provide a significant complement to experimental
efforts and aid in the understanding of the enzymatic profile of cytidine deaminase.
More specifically, we present our predictions about the structure of the active species
and the structure of the active site for low pH. Finally, we present our results for the
structure of the zinc ion coordination for different substrates which represent points
along the reaction profile. In particular, we find that our results for th&2r82 and
the ZnS,129 bondlengths yield similar trends compared to x-ray crystallography
data as the enzyme structure changes from the ground-state to the transition-state
analog and from the transition-state analog to the produgtass Academic press

I. INTRODUCTION

Considerable effort has been devoted to study the catalytic mechanisms of the nucle
deaminases cytidine deaminase (CDA) and adenosine deaminase [1-13]. The enzyme
is an efficient catalyst which accelerates the rate of hydrolytic deamination of cytidine
uridine. Understanding the catalytic mechanisms for CDA could have important poter
therapeutic uses [14-16]. Available x-ray crystallographic studies include several cry
structures of stable intermediate CDA states achieved using different analog complex

! Present address: Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850.
2 Present address: Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 9
0446.

242

0021-9991/99 $30.00
Copyright© 1999 by Academic Press
All rights of reproduction in any form reserved.



LINEAR-SCALING OF CYTIDINE DEAMINASE 243

represent the ground-state [12], pre-transition-state [10], transition-state [8], and pro
[13]. The experimental data from these studies have begun to suggest important subtle
the configuration of a catalyzed active zinc ion and in conformational differences betw
complexes. The €position on the pyrimidine ring moves about Rcloser to the Zn-
activated nucleophile while the amino group moves away from the nucleophile, with
N“—C* distance increasing from 1.38in the ground-state to approximately 2.80n the
product-state [13]. The enzyme active site apparently changes structure to accomm
each successive ligand in the sequence of structures.

However, many of these subtleties lie at or beyond the limit normally considered to be
noise level of an x-ray diffraction experiment. To verify their significance, higher resoluti
must be achieved or some theoretical tool must be employed to complement the experin
procedures. A quantum mechanical (QM) description of the sequence of structures fol
during catalysis has long been a goal to help mechanistic enzymologists understan
reaction pathway. Until recently, progress toward this goal has been frustrated by inadec
computational methods and by the lack of a good experimental system with whicl
calibrate the calculations. The problem is that any theoretical technique employed nee
give a valid description for much of the protein environment surrounding the active site

Quantum mechanical methods for determining the electronic structure of atoms
molecules are crucial for a reliable description of complex chemical processes that
inaccessible to conventional empirical models, e.g., bond formation and cleavage in cl
ical reactions, polarization, and chemical bonding of metal ions. However, standard
techniques are limited to fairly small molecular systems because of a variety of theore
and technical difficulties. One of the several limitations of applying QM methods to lal
systems is the high order scaling properties. For example, in Hartree—Fock (HF) type
culations, the computational requirement, including CPU time and memory, schlé as
to N4, whereN is the number of electron orbitals in the system. Density functional tr
ory (DFT) offers more computational efficiency, without loss of accuracy, but has sim
scaling problems due to tHé? diagonalization of the Hamiltonian matrix [17, 18].

Several linear-scaling methods have been proposed to circumveNfttiiagonalization
constraint [19-37]. In all the methods, the localization of the electronic degrees of free
is the key for achieving linear-scaling in QM calculations. One can efficiently calcul:
the electronic structure of a large system with just the local variables, localized molec
orbitals, or the density matrix. There is also the scaling issue of numerical integra
and matrix construction in DFT (and HF) calculations. As the focus here is on our us
semiempirical approaches, the reader is referred to a recent review article on the li
scaling approach for the first-principle methods [38].

The divide-and-conquer (DAC) approach proposed by Yang was the first linear-sce
method used to carry out QM calculations [19, 39]. The basic strategy of this metho
as follows: divide a large system into many subsystems, determine the electron dens
each subsystem separately, and sum the corresponding contributions from all subsy
to obtain the total electron density and the energy of the system. This approach is k
on the fact that the electron density is a local property and, in DFT, the ground-state
system can be obtained solely from the electron density. A density-matrix reformulatio
the method by Yang and Lee further simplifies the algorithm [20]. Mé&t and St-Amant
et al. have successfully applied and extended the DAC approach to several systems [40

The organization of this paper is as follows. In the next section (Section II), we
view the DAC approach as it has been implemented into a semiempirical framew
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After discussing this implementation, we will discuss the application of the DAC &
proach within this semiempirical framework to the cytidine deaminase enzyme systel
Section IlI.

II. THEORY

A. Semiempirical Quantum Chemical Theory

In semiempirical methods, the matrix elements of the Hamiltonian matrix are efficier
calculated because of the judicious approximations made. The Hamiltonian matrix «
structed from semiempirical (or tight-binding like) approximations is usually very spa
and the computational effort in practice is limited only by the cubic-scaling diagonali:
tion processes. The sparseness of the Hamiltonian matrix implies that semiempirical
methods [44—-46] are naturally conducive for the application of linear-scaling algorith
to “diagonalize” the Hamiltonian matrix. The combination of an efficient determinati
for the matrix elements and a linear-scaling algorithm for “diagonalization” have allow
feasible QM calculations for very large systems. The density matrix version of the D
approach by Yang and Lee [20] accommodates a density matrix description so that i
be applied to HF and semiempirical methods. It has been implemented into semiempi
methods by Leet al. [47] and Dixon and Merz [40, 41]. Stewart has implemented a pse
dodiagonalization method to obtain localized molecular orbitals [48]. Daated$ have
used a conjugate gradient density matrix search to replace diagonalization in semiemp
calculations [49]. These methods all have shown the feasibility of simulating molect
with several thousand atoms within the semiempirical QM framework.

In the HF method, the system wavefunction is obtained from the eigenvalue equatic

(F—emSCnm =0, (1)
whereF is the Fock matrix,S is the basis overlap matrix, arfeC,} and {en} are the

molecular orbitals and the corresponding eigenenergies of those orbitals. In terms o
density matrixP, the Fock matrix can be rewritten as

1
Fiy =ty + 3 { Puti 1) = SPacik 1 | @
kl

whereH is the one-electron core Hamiltonian matrix aplll are the indices of basis
functions. The four-center two-electron repulsion integigl| kl), is defined by

1
[ri —rp]

i 1 Kl)= / dr1 dragh ()b (1) et ) (12), ®

where{¢; } are the basis functions. The density matrix is obtained from the molecular orbi
{Cm} of Eq. (1) by the following summation over the occupied orbitals

occ

Rj =2 CimCjm. @
m



LINEAR-SCALING OF CYTIDINE DEAMINASE 245

Finally, the total electronic energy of the system is

E=%ZP.J-<HH + Fij). (5)
1]
To achieve self-consistent results, Egs. (1)—(5) must be solved iteratively.

One of the main practical difficulties for HF methods is the high-order scaling prope
of calculating the Fock matrix and the density matrix. Obtaining the Fock matrix col
scale asN“* because of the evaluation of four-center integrals. Furthermore, to get accL
results, one should use a better basis set which leads to a very time-consuming evall
of integrals. Because of these difficulties, the application of HF methods is limited
application to large systems.

Semiempirical calculations are set up with the same general structure as a HF cal
tion, but the required integrals are approximated or completely omitted. The approxim.
integrals are calculated from a set of parameters which are fit to give the best pos
agreement with experimental data, as such the evaluation of integrals becomes much
and larger systems can be calculated. We only focus on the MNDO type semiempi
methods, since not only is this type used to generate the results presented in Section |
also these methods are the most widely used and give acceptable results in most case
The approximations in the MNDO type semiempirical calculations, which include MNL
[50], AM1 [51] and PM3 [52, 53], are described as follows.

(1) The overlap matrix in Eq. (1) is set to the identity matrix and Eq. (1) reduces t
(F—em)Cm=0. (6)

(2) All three- and four-center two-electron integrals are set to zero{iijg.kl) =0,
except for integrals withj on the same atom arkl on the same atom which will be
calculated.

(3) Thetwo-center/two-electron integrals are approximated by the interactions of
sical multipoles. The basis pair is treated as an electron density distribution and appro
imated by point charges, such that the two-center integrals are represented by intera
between two sets of multipole distributions. Of course, this approximation fails when
distance between the two centers approaches zero, since consequently the integrals v
proach infinity. In such a case, the two-center integrals should reduce to the correspor
one-center integrals, but they do not. To correct this problem, a modified formula is L
for the Coulomb interactions [54]. For example, in the integral whigrereduces to two
s-states on atom A andl) reduces to two s-states on atom B, i{exSa | SgSg), the factor
1/Ris set equal to A\/(R 4+ Ca+Cg)24+ (Ga+Gpg)2, whereCpa, Cg, Gp, andGg are
derived parameters so that the two-center integrals reduce to the corresponding one-
integrals atR=0.

(4) The one-center two-electron integrals are fit to experimental data.

(5) The off-diagonal elements of the Hamiltonian matHx,are approximated by

Si
2

Hij = =B + Bj), (7)

where§; is an overlap matrix element, assuming thand j are Slater orbitals, and the
{Bi} are parameters. The overlap matrix here is used only for calculation &f thatrix
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and it is not the equivalent overlap matrix as used in approximation (1). The diagc
elements oH are attributed to two types of contributions. For an atomic orbital atom
A, the contribution from atonA\ is fit, but the contribution from other nuclei, namely the
electron—nuclear interaction, is approximated by

HEM = —XB:ZB%:M | kI, (8)

where Zg is the nuclear charge of atof® and (ii | kl) is the two-center/two-electron
integral. The indice& and| signify that the atomic orbitals are centered on atBnany
atom different from atorA.

(6) In simple semiempirical methods, the nuclear—nuclear interaction between a
A and atomB is modified to become the core—core repulsion interaction as

En(A, B) = ZaZg(sSaSa | SgSB)- 9)
However, in the MNDO method, the nuclear—nuclear interaction is modified such that
ENNPO(A, B) = ZaZp(sasa | SeSp) (1 + e7%4Fe 4 g7oeRee) (10)
or for O—H or N-H pairs,
EMNPO(A, B) = ZaZg(sasa | SeSs) (1 + Rape @ Ree 4 gmoefas) (11)

wherea andag are parameters. In the AM1 and PM3 methods, extra terms are adc
yielding

ZpZ
En(A, B) = ER,ANDO(A, B) + é\ B <ZakAebkA(RABQ<A)2 + ZakAebkA(RABCkA)2> ,
AB K K
(12)

wherea, b, andc are all parameters.

Considering the above approximations, semiempirical methods are much faster tha
methods in evaluating the the matrix elements needed for constructing the Hamilto
matrix. After this construction, the Hamiltonian matrix must be diagonalized to det
mine the band structure energy contribution of the total energy. In the next sections (Sul
tions 11.B—I1.D) we discuss the DAC approach to achieve linear-scaling “diagonalizatic
and its implementation to semiempirical QM methods.

B. The Divide-and-Conquer Approximation

In this section, we describe the original DAC method which is only applicable to DI
methods [19, 39]. In the next section (Subsection 11.C), we will describe the density ma
version of the DAC method which can be applied to both HF and semiempirical metha

The electron density is the fundamental variable in the DAC method and can be re
sented as the sum of contributions from subsystems. This is made possible through no
ization of partition functions,

> oprn =1, (13)
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wherep®(r) is the partition function for the subsystemThe total density is then expressec
as a sum of subsystem density,

p() = _p*Np(r) =Y p*(n), (14)

wherep®(r) = p*(r)p(r). By definition, each subsystem density has the proper contributi
to the total density. Prescriptions have been defined for the partition functions [19, 39].
resulting density and energy do not depend on the particular form of the partition func
in any significant way.

A subsystem density defined in Eq. (14) is localized in only a small region of the phys
space and therefore can be obtained efficiently with an approximation that depends o
local physical space,

P =2p (D o — i) [V (15)

where fz(x) is the Fermi functior( fz(x) =[1+ exp(—pBx)]~1) with inverse temperature
B, andy g (r) ande?, are local eigenfunctions and eigenvalues of the subsystem. The fa
of 2 in Eq. (15) is for double occupancy in closed-shell systems. For each subsystern
local eigenfunctions are given by the linear combinations of the local basis fungfiths

Y () = ZC.m e (n), (16)

where the linear coefficients are the solutions of the following generalized eigenvalue e
tion derived from the Rayleigh—Ritz variational principle,

(H* —exS")Co = 0. 17)

The Hamiltonian matrix and the overlap matrix elements are givéhiby; = (¢ |H|#{')
and(S")ij = (¢{" | 7), where the Kohn—Sham Hamiltoni&h depends on the density. The
chemical potentia,u is set by the electron density normalization condition,

/,o(r)dr =25 3 (4= )OI OO (18)

Equations (15)—(18) need to be solved self-consistently, justasinthe Kohn—-Sham me
Finally, the total electronic energy can be calculated friar ¢ + Q[p], wheree is an
approximation to the sum of the Kohn—Sham eigenvalues,

£ —ZZZe 5 (1 — &) (WD P (D IYED)), (19)

The quantityQ[p] = [ p[—¢(r)/2— Vxc(r)] dr 4+ Exc[p], whereg(r) is the electrostatic
potential due to the electrongyc(r) is the exchange-correlation potential, abg[ o] is
the exchange-correlation energy, can be determined from the density alone [19, 39].

The use of a set of basis functions localized in the relevant part of the space is what r
the DAC method have linear-scaling with system size. The partition functions of Egs. (1
(14) define the physical space division of a molecule. This concludes our discussion o
general DAC method. In the next section (Subsection 11.C), we discuss the density m
version of the DAC method.
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C. Density Matrix Version of Divide-and-Conquer Method

The fundamental component of the DAC method is the density matrix. The Kohn—St
one-electron density matrix is defined in terms of the Kohn—Sham orlitale)} as

N/2

p(r, 1) = 2Z¢m(r)wm<r )= pijdi(Ne; (1), (20)

ij

where the density matrix in the atomic orbital space is given by the linear coefficient
the expansion of the Kohn—Sham orbitals; namely,

N/2
oij = ZZCiijm- (21)
m

We can define a partition matrif { for subsystenmu in the space of atomic orbitals.
Corresponding to Eq. (13), we |mplement the normalization condition

ZP" =1 (22)

There is a simple way to construct such matrices; namely,

Py=1 ificaand) e a
=1/2 ificaandj¢a (23)
=0 ifi ¢ xandj ¢ a.

The density matrix can then be divided into subsystem contributions as
Lij —Z j Pij _ZIOI]’ (24)

which parallels Eq. (14).
We now make the approximation for each subsystem,

pp = 2P, Zfﬁ “)ClCon- (25)

This approximation corresponds to the one made for Eq. (15) in the original density
proach. It uses a set of local eigenvectors to approximate the density matrix of a subsy:
This is the crux of linear-scaling in the computational effort, because the set of local eic
vectors for a subsystem is finite and independent of the size of the whole system.
chemical potentigl is determined by the normalization,

N :22,)”3] :22{23‘;42@@—8;)@,“0%} Sj, (26)
ij ij « m
and the sum of eigenvalues becomes

£ =2) " ety —ef ZP“C“ C.S
a m
=2y {Z Z fo (1 Cfmem} Hij, (27)
ij o
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corresponding to Eq. (19). The second equality in Eq. (27) follows from the eigenequa
Eq. (18) and the special construction of the partition matrix in Eq. (23) can also be wri
asPj=q" +qf, whereq® =1/2if i e andg® =01if i ¢ .

The main difference between the density formulation and the general DAC metho
that the division of the molecule in the former is accomplished in the space of the atc
orbitals, while the approximation of each subsystem by a set of local basis functions rern
the same as described in Eqgs. (16) and (17). When there is only one subsystem per
Egs. (22)—(24) for the division of the density matrix correspond exactly to the Mullik
population analysis [55].

There are two advantages of this density matrix formulation. The first one is that
no longer need to calculate the integrals associated with the partition functions, the
(¢ ()| p*(r)]¢f (r)). This makes the new formulation more efficient, as three-dimensiol
numerical integration is time consuming. The second advantage is that the density m
formulation can be applied to othalo initiomethods such as HF and semiempirical method
A drawback in dividing the molecule in atomic orbital space is that the division becon
less localized in the physical space as we use more diffuse atomic functions—a well-kn
problem of the Mulliken population analysis. In contrast, the Hirshfeld-type partition of t
density, Egs. (13) and (14), is much less dependent on the basis functions.

The energy gradients with respect to the nuclear coordinates can be calculated
“divide-and-conquer” approximation to the exact force expression, as has been done
the original density formulation [56]. However, we can have more efficient force calculati
within the semiempirical approach. See the next section (Subsection I1.D) where we dis
the implementation of the DAC method for semiempirical QM methods.

D. The Divide-and-Conquer Implementation to Semiempirical
Quantum Chemical Methods

The density matrix DAC method has been implemented into the MOPAC semiempir
method [57]. In semiempirical calculations, the electronic energy is expressed by

1
E=§%:,0ij(Hij + Fj), (28)

whereH is the one-electron core Hamiltonian matrixjs the Fock matrix, ang is the
density matrix. In the DAC approach, and using Eg. (14), the electronic energy car
rewritten as

1
E=2> 2 fj(Hj + Fy). (29)

o ij

The energy gradient expressions for the DAC approach have been previously derive
shown to be accurate [56, 20]. In the MOPAC package, the energy gradients are calcu
with the frozen density approximation. With this approximation, the DAC energy gradi
with respect to ther nucleus positiorR, is expressed by

1 o
VR,E =35> fj Vra(Hij + Fij). (30)

o ij
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Procedures for calculating the gradients are similar to those in MOPAC, except that
total density matrix is approximated by the DAC approach. The MOPAC package U
the BFGS optimization procedure for geometry optimization [57]. This procedure requi
constructing the Hessian Matrix which has @iN?) scaling requirement for memory
usage; it cannot be used for large molecules. Instead, we choose a conjugate gre
method for geometry optimization [58].

The gradients can be calculated by analytical methods [59] or by the finite differe
method. The finite difference method is faster than the analytical method, since the formr
to calculate matrix elements are much simpler than those to calculate the derivative
matrix elements. Previous work showed that the finite difference method gives very ¢
agreement to the analytic method, thus the finite difference method has been usedto cal
gradients, as it is used in the MOPAC package [57]. However, the finite difference met
scales at least quadratically and it would become the computational bottleneck whel
system size becomes very large.

Several tests were performed to demonstrate the efficiency of the DAC implementatic
the semiempirical quantum chemical methods [47]. The results of these tests demon:
that the DAC implementation is computationally efficient and accurate. In all previou
performed tests and for the results presented here, the following computational criteri:
used.

Asubsystem s defined as one amino acid residue for protein molecules and one nucle
unit for DNA molecules. Instead of the entire set of atomic orbitals, each subsyster
described by a set of local basis functions, which enhances the accuracy of the descr
for neighboring atomdbuffer atom$. Buffer atoms are selected by a distance criteriRy,
if an atom is within a distanc&, of a subsystem, this atom will be included as a buffe
atom for that subsystem. The diagonalization for a subsystem is performed with atomic |
functions of the subsystem atoms and buffer atoms, and the computational effort scal
N2, whereN, is the number of basis functions in thesubsystem and its buffer region.
Studies using density functional theory have shown that the buffer region size neede
a given accuracy is independent of the size of the whole molecule [39, 60]. Hence,
can chooseN, as roughly a constant; for example, each subsystem consists of a si
amino acid. The accuracy for different buffer sizes was previously determined elsew
[47]. An accuracy criterion of 5 10~2 per atom was chosen for the energy calculatior
and 0.1 kcal/(mo&) in gradient calculations. With this accuracy criterion, we found ths
the buffer size should have no less than a%cutoff (R, = 6.0 A).

While the DAC method overcomes tf@(N?) scaling problem in the diagonalization
process, theD(N?) scaling of memory storage must be addressed. Since most ma
elements in quantum calculations are negligibly small for large molecules, sparse m.
storage methods can be employed. Because of density matrix locality in real space
choose to truncate the matrix elements using a distance critedRpnOnly the matrix
elements corresponding to atom pairs with interatomic distance les®thare evaluated
and stored. This cutoff reduces the memory storage so that it becomes linear with re:
to the size of the system. In addition, the CPU time used for matrix element evalua
is significantly reduced since fewer of them are evaluated. Similarly, a smaller numbe
matrix elements for the one-electron core Hamiltonian and Fock matrices are evaluatet
to this judicious cutoff criteria.

For solution phase calculations, a dielectric continuum model of the solvent (COSN
is used. The solute charge distribution is represented by a set of atomic charges, ©
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moments, and quadrupole moments, that induces a reaction field charge density o
solvent accessible surface of the solute [47, 61]. The solvent polarization effects or
solvation energetics of biological molecules have been calculated with the DAC apprc
[62, 63]. The error of screen energy in COSMO for the non-infinite dielectric const:
solvent has been estimated a24, wheree is the dieletric constant [64]. For water, whcih
hase =785, the error is less than 1%. For the worst case, vacuunz Bak0 and this
introduces a 50% error in the screen energy. However, for solvenéwith 0, the solvation
energy itself is quite small; hence the absolute error remains irrelevant. Therefore, evi
low dielectric solvent, the COSMO dielectric continuum model should still work reasona
well.

We have described the main features of the DAC method and its implementation ir
semiempirical quantum chemistry package—MOPAC/DAC. We have used MOPAC/D
to perform simulations of a large-scale system (1330 atoms) including much of the prc
environment surrounding an active site of CDA. The results of these simulations will
discussed in the next section (Section Ill).

Ill. APPLICATIONS TO CYTIDINE DEAMINASE

A. Calculational Details

As shown in Scheme I, the CDA active site includes aafombound by the thiolate
sulfur atoms of the Cys-129 and Cys-132 side chains and by a nitrogen atom of the His
side chain. Bound to this Zn-complex is a ©Hor water molecule which displaces the
NH, group, located at the‘@osition on the cytidine ligand, via nucleophilic hydration o
the N*~C* double bond. The product of this displacement is apparently the conventic
keto tautomer of uridine. The carboxylate group of Glu-104 near the gtbHup on the
cytidine ligand assists in the reaction both by stabilizing the tetrahedral transition-state
by acting as a proton shuttle [11-13]. Several crystallographically determined struct
have been obtained for different complexes of CDA; each complex represents a point

Ogy" Ogy. /
\‘H Zh——CY8132
Thrigz=—=0---._____ HNH /I""/ \Hisz
H
H
N3
| cytidine
H Ny 0
Ribose

SCHEME |
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the reaction pathway. Recently, we performed several calculations focusing on the n:
of the active site and how it differs for each complex.

For these calculations, we created a system which represents roughly 30% of a mon
of the enzyme. This 1330-atom system, which surrounds the active site, was create
including any residue within 8.8 of the ligand (including contributions from the other
monomer). Chain ends in the system were terminated by addition of acetyl or N-me
groups. Our goal in choosing such a large system was for the purposes of including mu
the protein environment in our calculations. Of course, a common approach for incluc
a valid description of the protein environment surrounding the active site has been to c
bine QM methods with molecular mechanical (MM) force fields [65—78]. While QM/MN
methods are promising, there remain difficulties in treating the boundaries between the
and MM subsystems; these difficulties should be overcome in due time. As an alterna
we have taken advantage of the MOPAC/DAC implementations which allow larger C
simulations to be performed efficiently using purely QM methods. Performing larger C
simulations to account for a significant portion of the protein environment surrounding
active site has long been a goal in quantum chemistry.

In all of our semiempirical calculations, we use the PM3 Hamiltonian [52]. The PN
parameterization is shown to work well for Zn complexes [79], and recently for simulatic
of the enzyme carbonic anhydrase which has a very similar hydrolytic mechanism an
tetrahedral coordination as found in CDA, although typically semiempirical methods g
bond lengths on the order of 5% too large [77]. In addition, all of the optimized geometi
of the largest systems were obtained from gas-phase calculations. Given that the activ
of CDA is not solvent-accessible [8], the gas-phase approximation is a physically acct
description Ab initio work on Zn complexes indicates that a reaction in an enzyme-act
cavity may actually be better approximated by a gas-phase model rather than by a n
reaction in solution [80]. This point is definitely more valid for CDA than in other zin
enzymes where the active site, such as in carbonic anhydrase, is partly solvent-acce:
Since our calculations include much of the protein environment surrounding the active
our results are more physically reasonable than gas-phase calculations of a small s
where only a few primary components of the active site are included.

A smaller system consisting of 154 atoms was created and calculations using bott
PM3 semi-empirical Hamiltonian within MOPAC and DFT techniques within the DM
package [81] were performed as a comparison against the larger 1330-atom systems
smaller system includes all the amino acids shown in Scheme I, such that residues 127
and residues 102-104 were included in the simulations. As in the larger 1330 syst
blocking end groups of acetyl or N-methyl were used to terminate chain ends. Residue
directly exposed to the active site were replaced by Glycine side chains (i.e., residues
130, and 103).

Similar calculations using PM3 and DFT were also performed on an even smaller sys
containing only 77 atoms, as shown in Scheme Il. This smallest system consists of modif
the system shownin Scheme |, suchthat Threonine-127 isreplaced by Glycine, Cysteine
and Cysteine-132 are reduced to SChihd Histidine-102 is reduced to NHn addition,
the ribose ring of the ligand is not included.

In the calculations for both the 154 and 77 atom systems a variety of dielectric ¢
stants were used within a dielectric continuum model. The DFT calculations were m
using both the local and non-local approximations to the exchange-correlation interact
Both minimal numerical basis sets and double numerical basis sets were used in the
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calculations for a comparison. These results are intended to give a preliminary compa
of smaller sized systems to our larger system and do not represent a systematic stu
convergence nor validation of the chosen theoretical (semiempirical) level.

For all of these (77, 154, and 1330 atom) systems, geometries of different starting
rangements were optimized, keeping backbone atoms fixed, with a 0.2 kcalkprots
and 2.4 kcal/(molé\) max tolerance in the gradients. Keeping the backbone atoms fixet
justified for these calculations by the fact that backbone atoms in several refined CDA ¢
plexes coincide with rms deviations of 0.25or backbone atoms, and the only significan
changes occur near the active site [13]. The initial starting structure for all of these sysi
was based on the x-ray crystallographic structure for the ground-state analog com
3-deazacytidine [12]. However, our initial structures where modified slightly to resem
the different protonation states of Glu-104 and Zg=Hvhich were minimized in our calcu-
lations. In addition, we replaced the 3-deaqgzacytidine ligand with the cytidine ligand wt
correctly represents the ground-state complex of the enzyme.

B. The Active Species of the Ground-State Complex

Recently we performed calculations to specify the structure of the active species a
initiation of the reaction pathway [82]. In those results, which are summarized here,
addressed two importantissues: (1) whether the active species consists of a zinc-coord
hydroxide ion (Zn-OK™) or a zinc-coordinated water molecule (Zn®); (2) which of
the two carboxylate oxygen atoms of Glu-104 is protonated in the active species.

Initially, we optimized the geometry for a 1330-atom system which represents the
tive site, as shown in Scheme |, and the surrounding protein environment. This struc
contains Zn-HO in the active site with the carboxylate group of Glu-104 unprotonate
and it represents the active site of the complex just before the active species is cr
by deprotonation of Zn-pD. Results of geometry optimization, shown in Fig. 1a, for thi
system indicate that the substrate water is stabilized by the carboxylate group of Glu
via hydrogen-bonding.
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Activation of CDA above about pH 5 suggests that ZgEHransfers a proton to the
carboxylate group of Glu-104; however, two different carboxylate oxygen sitesaf@
O¢2) could accept a proton and two possible protons could be donated by the substrate \
Four additional systems were created representing the configurations of these po:
protonation arrangements and their geometries were optimized. The net charge of
these 1330-atom systems remains the same since the proton fro(Zis-Hot removed
from the system but only displaced to a nearby location on the Glu-104 side chain.

We conclude that one structure, shown in Fig. 1b, is lower in energy and is promine
the lowest energy structure than the other four structures by at least 46.0 kcal/mol. In
structure, a hydrogen-bonding network is formed between the hydroxide proton of
OH®, the protonated @ of Glu-104, and the Riposition of the cytidine (CTD) substrate.
This hydrogen-bonding network gives credence to the conclusion that this structure is |
in energy, since the higher energy structures do not form such a nicely structured hydrc
bonding network.

Considering all calculated structures, not only is the low energy structure, show
Fig. 1b, lower in energy compared to the other two-proton structures, but it also correl
quite well in detail with the geometry observed at the active site of the enzyme in the x:
crystal structure [12]. Both the crystal structure and our calculations for the low energy st
ture indicate that the oxygen of the hydroxide arfb€the cytidine ligand are significantly
closer than the van der Waals limit. Moreover, this short Ottli€tance implies, in turn, that
the nucleophilic attack is being initiated as the ground-state Zf=Od#ructure is formed.
Both evidence from the energetics and from comparison to crystallographic data sup
the fact that the low energy structure closely resembles the structure of the active spe

Table | shows results for the 154- and 77-atom systems using several DFT models ar
PM3 semiempirical under different solvation conditions with varying dielectric constar
The energies (kcal/mol) listed are the differences between the structure containingZn-
in the active site and the structure containing Zn-OH in the active site, where a neg:s
number implies that the latter is lower in energy. Note that the net charge on the@asd
Zn-OH structures is identical. The proton abstracted from 20-i4 not removed from the
Zn-OH system, but rather only displaced to the nearby Glu-104 side chain. The calcula
for the 154-atom system show that the Zn-OH structure is consistently lower in ene
compared to the Zn-$O structure which is the same conclusion that was obtained for
much larger 1330-atom system. However, the energy difference between the Zn-OH
Zn-H,O structures is much greater for the 1330-atom system which might be attribut:
to the fact that this large system contains a significant portion of the surrounding pro
environment.

The results for the 154-atom system, listed in Table I, support two points which w
made regarding the larger 1330-atom system. The first point is that our choice to calci
our 1330 system within the gas-phase was judicious, and this was initially justified since
active site is solvent inaccessible. The results for the 154-atom system lend further su
to this initial justification since the energy differences remain relatively unchanged v
respect to differences in the dielectric constant (indicating that the active site for this me
system is for the most part solvent inaccessible). Note that the energies for the 77-
system are widely dependent on the choice of dielectric constant indicating that the a
site for this smaller model system is more solvent accessible. The second point is the
results for the 154-atom system indicate that the energies remain relatively indifferent
respect to the DFT method used. This is not the case for the 77-atom system and it ap
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TABLE |
Energy Differences for Different Models under Different Solvation
Effects for Two Different Systems

Method € 154 atoms 77 atoms

PM3 1.0 —22.64 —2.17

4.0 —23.67 0.75

10.0 —23.66 2.22

78.5 —23.52 3.41

LDA/Min 1.0 —14.76 29.29
4.0 —14.78

10.0 —14.87 13.58

LDA/DN 1.0 —16.03 5.16
10.0 —-12.79

78.5 16.89

BPW/DNP 1.0 —14.09 -2.10

78.5 —-12.32 —-10.04

Note.The solvation model COSMO was used [47, 61], and the second column gives
€ which signifies the dielectric constant used for that calculation (i.e=3&s phase,
and 78.5=water). The last two columns are the energy differences (kcal/mol) between
the structure containing ZnJ@ in the active site and the structure containing Zn-OH in
the active site. A negative number implies that the latter structure (Zn-OH) is lower in
energy. The 154- and 77-atom systems are illustrated by Schemes | and Il, respectively.
Legend. PM3, semiempirical Hamiltonian within the MOPAC routine [57]; LDA/Min,
local density approximation with minimal numerical basis set; LDA/DN, local density
approximation with double numerical basis set; BPW/DNP, Becke '88 3 parameterization
formula for the exchange energy [87], Perdew and Wang '91 gradient corrected formula
for the correlation energy [88, 89], double numerical plus polarization basis set.

that larger systems may be less sensitive to the theoretical method employed. This suc
that for our large 1330-atom system use of the PM3 semiempirical method should
quite reasonable results with respect to the much more computationally intensive us
DFT.

Systems with protonating arrangements corresponding to low- and high-pH states
also considered [82]. The low-pH structure consists of a three-proton arrangement cor
ing Zn-H,O with the O2 of Glu-104 protonated as shown in Scheme Ill. We predicted th
at low pH the Zn-O bond length should be quite large, as if the substp@ediery weakly
bound to the Zn atom. Experimental x-ray crystallography data have been collected fo
ligand-free CDA structure at low pH. Preliminary comparisons of the low-pH structure
the ligand-free CDA structure under normal conditions indicate that indeed the subs
H,O0 is displaced away from the Zn atom under the low-pH conditions [83].

C. The Valence Buffer Effect in Cytidine Deaminase

Several crystallographic complexed structures, which represent points along the rea
pathway, have been experimentally determined. We performed calculations on thre
these structures [84], and in this section a summary of the results are provided. The
structure, as shown in Scheme 1V, is a complex of CDA with 3-deazacytidine, wh
structure resembles the ground-state complex with its cytidine substrate.
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HO 081\ /
\\H zh—CV8132
Thryo7 O--oe. . HNH //:,,‘/ \HiS102
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l cytidine

H Ni 0]

ﬁibose

SCHEME Il

The second structure, as shown in Scheme V, is a complex of zebularine 3-4 hyt
which is an analog structure resembling the transition-state complex. The final and |
structure, as shown in Scheme VI, is a complex of uridine which is the product-state.
each of these structures a 1330-atom subsystem was created and the geometry opt
as described for the ground-state complex in Subsection Ill.A.

One goal for calculating these three structures is to investigate the bond distance bet
the Zn atom and the two,Sitoms of the Cys-129 and the Cys-132 side chains,gl120and
dzn_s,132. Xianget al. report that each distance increases from the deazacytidine com
to the zebularine 3—4 hydrate complex [12]. In their work they find that more signific:
increases are found for the Zn-B2 bond distance since in the transition-state anal
structure there is a shortening of the hydrogen bond formed between Glu-104 and the
oxygen of the ligand. Xiangt al. further report that the two bond distancesg, &, 120 and

082 081‘ /
\\H Zn/CyS132
Thrigz=—=0---.._____ HNH ///"‘/ \HiS1oz

! H

TNCH

| 3-deazacytidine

H N1 O

Ribose

SCHEME IV
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Gluqoq
/\
082- 081
/CYS129
Thri,7——=0 0 —"Cysia
H O/ His+02
SNNGH
‘ zebularine 3,4-hydrate
H N1 O
Ribose
SCHEME V

dzn-s, 132, again decrease from the zebularine 3-4 hydrate complex to the uridine comy
with the more significant decrease for the Znt32 bond distance.

This increase/decrease of the Zpi89 and Zn-$132 bond distances represents whe
is defined as the “valence-buffer” mechanism [12, 85, 86]. The bond valence determ
the strength of the bond to a metal which varies inversely with the distance. Theref
the experimental results show that these two bonds weaken as the enzyme progi
from the ground-state to the transition-state, and strengthen as the enzyme progresse
the transition-state to the product state. More significant increases/decreases of the :
132 bond distance indicate that this bond is weakened/strengthened more significantl

Table 1l shows the results for the bond distances, €120 and dzn_s, 132, obtained the-
oretically and experimentally for different CDA complexes. Our results do not comp
well to the experimental bond distances for the deazacytidine complex which show

/G|U1o4
082- \Ogl
/CYS129
Thriz7=—=0 0 Z7i—CY8132
His
H 102
TNNGH
l uridine
H N1 O
Ribose

SCHEME VI
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TABLE Il
The Calculated Distances (imd) between the Zn Atom and the TwosS,
Atoms of the Cys-129 and Cys-132 Residues

Theoretical Theoretical Experimental Experimental

CDA complex Gn-s, 129 Ozn-s,132 Ozn-s,120 dzn-s,132
Cytidine 2.433 2.428
Deazacytidine 2.413 2.345 2.301 2.087
Zebularine 3-4 hydrate 2.428 2.382 2.407 2.346
Uridine 2.407 2.332 2.310 2.265

Note. These distances are taken from the optimized geometries of different CDA
complex structures. Each optimized structure was represented by a 1330-atom subsystem
surrounding the active site.

dzn-s, 129 Is significantly larger than g_s, 132, although typically semiempirical methods
give bond lengths on the order of 5% too large [77]. However, our results do verify t
the these two bond distances increase as the structure changes from the ground-sta
log complex to the transition state analog complex and vice versa as the structure che
from the transition-state analog complex to the product complex. Our results further
ify that the Zn-$132 is weakened in the transition-state analog complex as there |
shortening of the hydrogen-bond formed between Glu-104 and the 4-OH oxygen of
ligand.

IV. SUMMARY

The divide-and-conquer methodology has made possible QM calculations for large
logical systems. Quantum mechanical modeling of enzymes can offer a great deal of il
mation and understanding to complement experimental study. Even at the semiemp
level, we are able to model the structure and energetics of enzyme systems, as demon:s
here for CDA. We have accurately determined the nature of the active species stru
for CDA, as well as predicted the low-pH structure. Experimental crystallographic d
suggest that our prediction of the low-pH structure is encouraging. Finally, we verify
valence-buffer effect, whereby the bond distance for Z&32 is weakened as the enzyme
passes through the transition state. Rapid progress in the development of linear-scaling
niques, combined with molecular dynamics, will make great progress in making molec
modeling an equal partner of experimental research in biochemistry and biophysics.
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